Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-tert-Butyl-2-[5-(5-tert-butyl-1,3benzoxazol-2-yl)-2-thienyl]-1.3benzoxazole

Yu-Feng Li,^a Lin-Tong Wang^a and Fang-Fang Jian^{b*}

^aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and ^bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: ffjian2008@163.com

Received 10 October 2008; accepted 13 November 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.061; wR factor = 0.187; data-to-parameter ratio = 15.5.

The title compound, C₂₆H₂₆N₂O₂S, was prepared by the reaction of thiophene-2,5-dicarboxylic acid and 2-amino-4tert-butylphenol. One of the tert-butyl groups is disordered over two conformations, with occupancies of 0.539 (1) and 0.461 (2). The two 1,3-benzoxazole rings are almost planar, with dihedral angles of 0.83 (18) and 1.64 $(17)^{\circ}$ between the five- and six-membered rings. The thiophene ring makes dihedral angles of 21.54 (19) and 4.49 $(18)^{\circ}$ with the planes of the five-membered oxazole rings. The crystal packing is controlled by π - π stacking interactions involving the thiophene and benzene rings, with a centroid-centroid distance of 3.748 (2) Å.

Related literature

For background on fluorescent whitening agents, see: Chen et al. (2008). For a related structure, see: Cowley et al. (2002).

Experimental

Crystal data

β

$C_{26}H_{26}N_2O_2S$	$\gamma = 79.32 \ (3)^{\circ}$
$M_r = 430.56$	V = 1116.9 (4) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 6.0852 (12) Å	Mo $K\alpha$ radiation
b = 11.520 (2) Å	$\mu = 0.17 \text{ mm}^{-1}$
c = 16.986 (3) Å	T = 293 (2) K
$\alpha = 72.79 \ (3)^{\circ}$	$0.25 \times 0.20 \times 0.18 \text{ mm}$
$\beta = 88.88 \ (3)^{\circ}$	

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: none
6826 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.187$ S = 1.044783 reflections 309 parameters

4783 independent reflections 2940 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.031$

57 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.32$ e Å⁻³

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008): program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2649).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, B., Wen, J. & Chen, J.-H. (2008). J. Taiyuan Univ. Technol. 39, 241-244. Cowley, A. R., Dilworth, J. R. & Dorinelly, P. S. (2002). J. Am. Chem. Soc. 124, 5270-5271

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, o2410 [doi:10.1107/S1600536808037665]

5-tert-Butyl-2-[5-(5-tert-butyl-1,3-benzoxazol-2-yl)-2-thienyl]-1,3-benzoxazole

Y.-F. Li, L.-T. Wang and F.-F. Jian

Comment

Fluorescent whitening agents have received considerable attention in the literature. They are attractive from several points of view in application (Chen *et al.*, 2008). As part of our search for new fluorescent whitening agent compounds we synthesized the title compound (I), and describe its structure here.

In (I) (Fig. 1), the C12—S1 bond length of 1.715 (3)Å is comparable with C—S bond [1.688 (2) Å] reported (Cowley *et al.*, 2002). The two 1,3-benzoxazole rings (N1/O1/C5-C11) and (N2/O2/C16-C22) are almost planar, with dihedral angles of 0.83 (18)° and 1.64 (17)°, respectively, between the five- and six-membered rings. The thiophene ring (S1/C12-C15) makes dihedral angles of 21.54 (19)° and 4.49 (18)°, respectively, with the five membered rings (O1/N1/C7/C8/C11) and (O2/N2/C16-C18).

In the crystal structure, there is no classical hydrogen bonds. The crystal packing is controlled by π - π stacking interactions involving the thiophene (Cg1: S1/C12-C15) and benzene (Cg2ⁱ: C17-C22) [(i) 2 - x, 1 - y, - z] rings, with a centroid-centroid distance of 3.748 (2)Å.

Experimental

A mixture of the thiophene-2,5-dicarboxylic acid (0.05 mol), and 4-*tert*-butyl-2-aminophenol (0.1 mol) was stirred in refluxing toluene (20 mL) for 4 h to afford the title compound (0.086 mol, yield 86%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93 and - 0.96 Å, and with $U_{iso}=1.2$ or $1.5U_{eq}$.

Figures

Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

5-tert-Butyl-2-[5-(5-tert-butyl-1,3-benzoxazol-2-yl)-2-thienyl]-1,3-benzoxazole

Crystal data C₂₆H₂₆N₂O₂S

Z = 2

$M_r = 430.56$	$F_{000} = 456$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.280 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 6.0852 (12) Å	Cell parameters from 1520 reflections
b = 11.520 (2) Å	$\theta = 2.5 - 23.6^{\circ}$
c = 16.986 (3) Å	$\mu = 0.17 \text{ mm}^{-1}$
$\alpha = 72.79 \ (3)^{\circ}$	T = 293 (2) K
$\beta = 88.88 \ (3)^{\circ}$	Block, yellow
$\gamma = 79.32 \ (3)^{\circ}$	$0.25\times0.20\times0.18~mm$
$V = 1116.9 (4) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector diffractometer	2940 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.031$
Monochromator: graphite	$\theta_{\text{max}} = 27.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 1.9^{\circ}$
φ and ω scans	$h = -7 \rightarrow 7$
Absorption correction: none	$k = -14 \rightarrow 14$
6826 measured reflections	$l = -21 \rightarrow 17$
4783 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.061$	H-atom parameters constrained
$wR(F^2) = 0.187$	$w = 1/[\sigma^2(F_o^2) + (0.083P)^2 + 0.378P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$
4783 reflections	$\Delta \rho_{max} = 0.48 \text{ e } \text{\AA}^{-3}$
309 parameters	$\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$
57 restraints	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.026 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
S1	0.58719 (14)	0.77701 (8)	0.00117 (5)	0.0601 (3)	
01	0.2519 (4)	1.00117 (19)	-0.08466 (12)	0.0567 (7)	
02	1.1731 (3)	0.55542 (18)	0.07064 (12)	0.0517 (7)	
N1	0.3847 (5)	1.0267 (3)	-0.21200 (16)	0.0621 (9)	
N2	0.8447 (4)	0.5523 (2)	0.13353 (16)	0.0568 (9)	
C1	-0.1548 (7)	1.4283 (4)	-0.4007 (3)	0.0955 (17)	
C2	-0.3823 (7)	1.2682 (4)	-0.3939 (2)	0.0812 (14)	
C3	-0.4984 (8)	1.4230 (4)	-0.3198 (3)	0.0971 (17)	
C4	-0.2957 (6)	1.3431 (3)	-0.34509 (19)	0.0553 (10)	
C5	-0.1536 (5)	1.2540 (3)	-0.27123 (18)	0.0509 (10)	
C6	0.0494 (5)	1.1872 (3)	-0.28414 (18)	0.0563 (10)	
C7	0.1771 (5)	1.1053 (3)	-0.21673 (18)	0.0513 (10)	
C8	0.0973 (5)	1.0894 (3)	-0.13912 (17)	0.0502 (10)	
С9	-0.1032 (6)	1.1522 (3)	-0.1232 (2)	0.0639 (11)	
C10	-0.2260 (6)	1.2345 (3)	-0.19051 (19)	0.0589 (11)	
C11	0.4174 (5)	0.9704 (3)	-0.13440 (18)	0.0522 (10)	
C12	0.6087 (5)	0.8788 (3)	-0.09425 (18)	0.0520 (10)	
C13	0.8153 (6)	0.8580 (3)	-0.12375 (19)	0.0567 (11)	
C14	0.9600 (6)	0.7598 (3)	-0.06945 (19)	0.0549 (11)	
C15	0.8597 (5)	0.7069 (3)	0.00045 (18)	0.0506 (10)	
C16	0.9503 (5)	0.6044 (3)	0.07071 (19)	0.0501 (10)	
C17	1.2069 (5)	0.4605 (3)	0.14351 (17)	0.0472 (9)	
C18	1.0079 (5)	0.4580 (3)	0.18216 (18)	0.0482 (10)	
C19	0.9930 (5)	0.3697 (3)	0.25628 (18)	0.0545 (10)	
C20	1.1818 (5)	0.2826 (3)	0.29081 (18)	0.0506 (10)	
C21	1.3811 (5)	0.2891 (3)	0.24862 (19)	0.0562 (11)	
C22	1.4005 (5)	0.3778 (3)	0.17496 (19)	0.0543 (10)	
C23	1.1718 (5)	0.1827 (3)	0.37112 (19)	0.0642 (11)	
C24	1.3987 (10)	0.1150 (10)	0.4102 (6)	0.163 (4)	0.539 (8)
C25	1.0524 (16)	0.0853 (6)	0.3523 (4)	0.098 (3)	0.539 (8)
C26	1.0314 (17)	0.2331 (7)	0.4322 (4)	0.112 (4)	0.539 (8)
C26'	0.9370 (10)	0.1644 (12)	0.3948 (8)	0.160 (5)	0.461 (8)
C24'	1.273 (2)	0.2224 (8)	0.4398 (5)	0.104 (4)	0.461 (8)
C25'	1.3145 (18)	0.0592 (6)	0.3717 (6)	0.111 (4)	0.461 (8)
H1A	-0.24570	1.48400	-0.44690	0.1440*	
H1B	-0.03250	1.37960	-0.42020	0.1440*	
H1C	-0.09720	1.47480	-0.37020	0.1440*	
H2A	-0.47220	1.32330	-0.44060	0.1220*	
H3B	-0.44820	1.47120	-0.28870	0.1450*	
H3C	-0.59200	1.37060	-0.28640	0.1450*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H6A	0.10010	1.19690	-0.33730	0.0680*	
H9A	-0.15400	1.14010	-0.06990	0.0760*	
H2B	-0.47120	1.21410	-0.35930	0.1220*	
H2C	-0.25800	1.21990	-0.41260	0.1220*	
НЗА	-0.58200	1.47730	-0.36820	0.1450*	
H19A	0.85790	0.36850	0.28280	0.0650*	
H21A	1.50760	0.23040	0.27150	0.0680*	
H22A	1.53530	0.38140	0.14850	0.0650*	
H24A	1.44840	0.04530	0.39010	0.2450*	0.539 (8)
H24B	1.38780	0.08690	0.46900	0.2450*	0.539 (8)
H24C	1.50390	0.17000	0.39630	0.2450*	0.539 (8)
H25A	0.99670	0.11480	0.29600	0.1460*	0.539 (8)
H25B	0.93010	0.07220	0.38830	0.1460*	0.539 (8)
H25C	1.15680	0.00880	0.36080	0.1460*	0.539 (8)
H26A	0.87580	0.23900	0.41970	0.1680*	0.539 (8)
H26B	1.05960	0.31370	0.42880	0.1680*	0.539 (8)
H26C	1.06940	0.17870	0.48700	0.1680*	0.539 (8)
H10A	-0.36330	1.27920	-0.18190	0.0710*	
H13A	0.85680	0.90420	-0.17470	0.0680*	
H14A	1.10850	0.73370	-0.08010	0.0660*	
H24D	1.33780	0.29410	0.41540	0.1560*	0.461 (8)
H24E	1.38710	0.15600	0.47090	0.1560*	0.461 (8)
H24F	1.15780	0.24140	0.47580	0.1560*	0.461 (8)
H25D	1.24530	0.02460	0.33590	0.1670*	0.461 (8)
H25E	1.32770	0.00360	0.42680	0.1670*	0.461 (8)
H25F	1.46060	0.07150	0.35280	0.1670*	0.461 (8)
H26D	0.86350	0.14870	0.35050	0.2400*	0.461 (8)
H26E	0.85490	0.23750	0.40530	0.2400*	0.461 (8)
H26F	0.94360	0.09520	0.44350	0.2400*	0.461 (8)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0560 (5)	0.0611 (5)	0.0504 (5)	-0.0031 (4)	-0.0010 (4)	-0.0020 (4)
O2	0.0479 (12)	0.0515 (11)	0.0502 (12)	-0.0087 (9)	-0.0014 (9)	-0.0071 (9)
01	0.0662 (14)	0.0563 (12)	0.0404 (11)	-0.0022 (11)	-0.0055 (10)	-0.0086 (9)
N1	0.0601 (17)	0.0672 (17)	0.0474 (15)	0.0009 (14)	-0.0021 (12)	-0.0072 (13)
N2	0.0476 (15)	0.0606 (15)	0.0517 (15)	-0.0058 (12)	-0.0029 (12)	-0.0030 (12)
C1	0.096 (3)	0.072 (3)	0.093 (3)	-0.018 (2)	-0.024 (2)	0.017 (2)
C2	0.091 (3)	0.079 (2)	0.073 (2)	-0.004 (2)	-0.028 (2)	-0.027 (2)
C3	0.101 (3)	0.095 (3)	0.081 (3)	0.036 (3)	-0.025 (2)	-0.036 (2)
C4	0.062 (2)	0.0510 (17)	0.0498 (17)	-0.0043 (15)	-0.0088 (15)	-0.0136 (14)
C5	0.060 (2)	0.0474 (16)	0.0457 (17)	-0.0102 (14)	-0.0036 (14)	-0.0142 (13)
C6	0.063 (2)	0.0590 (18)	0.0402 (16)	-0.0035 (16)	0.0005 (14)	-0.0094 (13)
C7	0.0578 (19)	0.0460 (16)	0.0454 (17)	-0.0063 (14)	0.0001 (14)	-0.0087 (13)
C8	0.063 (2)	0.0462 (16)	0.0393 (16)	-0.0076 (14)	-0.0022 (14)	-0.0107 (12)
C9	0.073 (2)	0.071 (2)	0.0438 (17)	-0.0045 (18)	0.0058 (16)	-0.0170 (15)
C10	0.061 (2)	0.0587 (19)	0.0548 (19)	-0.0007 (16)	-0.0010 (15)	-0.0200 (15)

C11	0.0556 (19)	0.0516 (17)	0.0470 (17)	-0.0095 (14)	-0.0017 (14)	-0.0110 (14)
C12	0.058 (2)	0.0505 (17)	0.0451 (16)	-0.0104 (14)	-0.0066 (14)	-0.0098 (13)
C13	0.062 (2)	0.0580 (18)	0.0468 (17)	-0.0165 (16)	-0.0009 (15)	-0.0071 (14)
C14	0.0524 (19)	0.0587 (18)	0.0517 (18)	-0.0119 (15)	0.0000 (14)	-0.0126 (14)
C15	0.0501 (18)	0.0497 (16)	0.0481 (17)	-0.0081 (14)	-0.0054 (14)	-0.0089 (13)
C16	0.0460 (17)	0.0499 (16)	0.0522 (18)	-0.0063 (14)	-0.0045 (14)	-0.0130 (14)
C17	0.0506 (18)	0.0442 (15)	0.0450 (16)	-0.0111 (13)	-0.0034 (13)	-0.0089 (12)
C18	0.0430 (17)	0.0492 (16)	0.0488 (17)	-0.0039 (13)	-0.0017 (13)	-0.0117 (13)
C19	0.0480 (18)	0.0606 (18)	0.0500 (17)	-0.0110 (15)	0.0031 (14)	-0.0086 (14)
C20	0.0497 (18)	0.0504 (16)	0.0494 (17)	-0.0081 (14)	-0.0056 (14)	-0.0119 (13)
C21	0.0496 (18)	0.0532 (18)	0.0602 (19)	-0.0018 (14)	-0.0120 (15)	-0.0121 (15)
C22	0.0417 (17)	0.0567 (18)	0.0612 (19)	-0.0060 (14)	0.0003 (14)	-0.0143 (15)
C23	0.063 (2)	0.062 (2)	0.0541 (19)	-0.0060 (17)	-0.0094 (16)	0.0005 (15)
C24	0.120 (7)	0.187 (9)	0.111 (7)	-0.025 (7)	-0.024 (6)	0.062 (6)
C25	0.149 (8)	0.065 (4)	0.072 (5)	-0.040 (5)	0.013 (5)	0.002 (3)
C26	0.182 (9)	0.084 (5)	0.059 (4)	-0.017 (6)	0.040 (5)	-0.013 (4)
C24'	0.168 (9)	0.087 (6)	0.051 (4)	-0.022 (6)	-0.015 (5)	-0.010 (4)
C25'	0.178 (10)	0.046 (4)	0.091 (6)	0.001 (5)	0.022 (6)	-0.007 (4)
C26'	0.105 (7)	0.175 (10)	0.143 (9)	-0.048 (7)	0.010 (7)	0.053 (7)

Geometric parameters (Å, °)

S1-C15	1.706 (3)	C14—H14A	0.9300
S1—C12	1.715 (3)	C15—C16	1.440 (4)
O2—C16	1.369 (3)	C17—C18	1.367 (4)
O2—C17	1.377 (3)	C17—C22	1.374 (4)
01—C11	1.366 (4)	C18—C19	1.379 (4)
O1—C8	1.377 (3)	C19—C20	1.386 (4)
N1-C11	1.286 (4)	C19—H19A	0.9300
N1—C7	1.400 (4)	C20—C21	1.399 (4)
N2-C16	1.284 (4)	C20—C23	1.511 (4)
N2-C18	1.397 (4)	C21—C22	1.380 (4)
C1—C4	1.524 (5)	C21—H21A	0.9300
C1—H1A	0.9600	C22—H22A	0.9300
C1—H1B	0.9600	C23—C26	1.511 (4)
C1—H1C	0.9600	C23—C26'	1.512 (5)
C2—C4	1.523 (5)	C23—C24	1.512 (5)
C2—H2A	0.9600	C23—C25'	1.521 (5)
C2—H2B	0.9600	C23—C24'	1.550 (5)
C2—H2C	0.9600	C23—C25	1.553 (4)
C3—C4	1.531 (5)	C24—H24A	0.9600
С3—НЗА	0.9600	C24—H24B	0.9600
С3—Н3В	0.9600	C24—H24C	0.9600
С3—НЗС	0.9600	C25—H25A	0.9600
C4—C5	1.526 (4)	C25—H25B	0.9600
C5—C6	1.379 (4)	C25—H25C	0.9600
C5—C10	1.398 (4)	C26—H26A	0.9600
C6—C7	1.389 (4)	C26—H26B	0.9600
С6—Н6А	0.9300	C26—H26C	0.9600

С7—С8	1.368 (4)	C24'—H24D	0.9600
C8—C9	1.365 (5)	C24'—H24E	0.9600
C9—C10	1.376 (4)	C24'—H24F	0.9600
С9—Н9А	0.9300	C25'—H25D	0.9600
C10—H10A	0.9300	С25'—Н25Е	0.9600
C11—C12	1.444 (4)	C25'—H25F	0.9600
C12—C13	1.350 (4)	C26'—H26D	0.9600
C13—C14	1.397 (4)	С26'—Н26Е	0.9600
C13—H13A	0.9300	C26'—H26F	0.9600
C14—C15	1.355 (4)		
C15—S1—C12	90.76 (15)	C19—C18—N2	130.7 (3)
C16—O2—C17	103.0 (2)	C18—C19—C20	119.2 (3)
C11—O1—C8	103.4 (2)	C18—C19—H19A	120.4
C11—N1—C7	103.6 (3)	С20—С19—Н19А	120.4
C16—N2—C18	104.0 (3)	C19—C20—C21	118.0 (3)
C4—C1—H1A	109.5	C19—C20—C23	120.9 (3)
C4—C1—H1B	109.5	C21—C20—C23	121.1 (3)
H1A—C1—H1B	109.5	C22—C21—C20	123.7 (3)
C4—C1—H1C	109.5	C22—C21—H21A	118.1
H1A—C1—H1C	109.5	C20—C21—H21A	118.1
H1B—C1—H1C	109.5	C17—C22—C21	115.4 (3)
C4—C2—H2A	109.5	C17—C22—H22A	122.3
C4—C2—H2B	109.5	C21—C22—H22A	122.3
H2A—C2—H2B	109.5	C26—C23—C20	111.4 (4)
C4—C2—H2C	109.5	C26—C23—C26'	53.4 (5)
H2A—C2—H2C	109.5	C20—C23—C26'	113.9 (5)
H2B—C2—H2C	109.5	C26—C23—C24	110.0 (3)
С4—С3—НЗА	109.5	C20—C23—C24	114.0 (5)
C4—C3—H3B	109.5	C26'—C23—C24	132.0 (6)
НЗА—СЗ—НЗВ	109.5	C26—C23—C25'	136.2 (5)
С4—С3—Н3С	109.5	C20—C23—C25'	112.4 (4)
НЗА—СЗ—НЗС	109.5	C26'—C23—C25'	109.2 (4)
НЗВ—СЗ—НЗС	109.5	C24—C23—C25'	47.4 (4)
C2—C4—C1	108.9 (3)	C26—C23—C24'	56.9 (4)
C2—C4—C5	108.7 (3)	C20—C23—C24'	107.2 (4)
C1—C4—C5	110.1 (3)	C26'—C23—C24'	107.4 (4)
C2—C4—C3	107.8 (3)	C24—C23—C24'	60.3 (4)
C1—C4—C3	108.6 (3)	C25'—C23—C24'	106.3 (4)
C5—C4—C3	112.7 (3)	C26—C23—C25	106.7 (3)
C6—C5—C10	118.6 (3)	C20—C23—C25	107.4 (3)
C6—C5—C4	119.4 (3)	C26'—C23—C25	54.6 (5)
C10—C5—C4	122.0 (3)	C24—C23—C25	107.0 (3)
C5—C6—C7	119.1 (3)	C25'—C23—C25	62.3 (4)
С5—С6—Н6А	120.4	C24'—C23—C25	145.2 (5)
С7—С6—Н6А	120.4	C23—C24—H24A	109.5
C8—C7—C6	119.8 (3)	C23—C24—H24B	109.5
C8—C7—N1	109.2 (3)	H24A—C24—H24B	109.5
C6—C7—N1	131.1 (3)	C23—C24—H24C	109.5
C9—C8—C7	123.4 (3)	H24A—C24—H24C	109.5

C9—C8—O1	128.8 (3)	H24B—C24—H24C	109.5
C7—C8—O1	107.9 (3)	C23—C25—H25A	109.5
C8—C9—C10	116.1 (3)	С23—С25—Н25В	109.5
С8—С9—Н9А	121.9	H25A—C25—H25B	109.5
С10—С9—Н9А	121.9	С23—С25—Н25С	109.5
C9—C10—C5	123.0 (3)	H25A—C25—H25C	109.5
C9—C10—H10A	118.5	H25B—C25—H25C	109.5
C5-C10-H10A	118.5	С23—С26—Н26А	109.5
N1-C11-O1	116.0 (3)	С23—С26—Н26В	109.5
N1—C11—C12	127.4 (3)	H26A—C26—H26B	109.5
O1—C11—C12	116.6 (3)	С23—С26—Н26С	109.5
C13—C12—C11	127.6 (3)	H26A—C26—H26C	109.5
C13—C12—S1	111.9 (2)	H26B—C26—H26C	109.5
C11—C12—S1	120.4 (3)	C23—C24'—H24D	109.5
C12—C13—C14	112.7 (3)	C23—C24'—H24E	109.5
C12—C13—H13A	123.6	H24D—C24'—H24E	109.5
C14—C13—H13A	123.6	C23—C24'—H24F	109.5
C15—C14—C13	112.4 (3)	H24D—C24'—H24F	109.5
C15—C14—H14A	123.8	H24E—C24'—H24F	109.5
C13—C14—H14A	123.8	C23—C25'—H25D	109.5
C14—C15—C16	129.5 (3)	С23—С25'—Н25Е	109.5
C14—C15—S1	112.2 (2)	H25D—C25'—H25E	109.5
C16—C15—S1	118.3 (2)	C23—C25'—H25F	109.5
N2—C16—O2	115.9 (3)	H25D—C25'—H25F	109.5
N2-C16-C15	127.2 (3)	H25E—C25'—H25F	109.5
O2-C16-C15	116.9 (3)	C23—C26'—H26D	109.5
C18—C17—C22	123.2 (3)	С23—С26'—Н26Е	109.5
C18—C17—O2	108.3 (2)	H26D—C26'—H26E	109.5
C22—C17—O2	128.5 (3)	C23—C26'—H26F	109.5
C17—C18—C19	120.5 (3)	H26D—C26'—H26F	109.5
C17—C18—N2	108.8 (3)	H26E—C26'—H26F	109.5
C2—C4—C5—C6	68.7 (4)	C12—S1—C15—C16	179.9 (2)
C1—C4—C5—C6	-50.5 (4)	C18—N2—C16—O2	-0.1 (4)
C3—C4—C5—C6	-171.8 (3)	C18—N2—C16—C15	179.1 (3)
C2-C4-C5-C10	-109.1 (4)	C17—O2—C16—N2	0.1 (3)
C1—C4—C5—C10	131.7 (4)	C17—O2—C16—C15	-179.2 (2)
C3—C4—C5—C10	10.4 (5)	C14—C15—C16—N2	-175.3 (3)
C10-C5-C6-C7	-1.5 (5)	S1-C15-C16-N2	5.0 (4)
C4—C5—C6—C7	-179.4 (3)	C14—C15—C16—O2	3.9 (5)
C5—C6—C7—C8	1.9 (5)	S1-C15-C16-O2	-175.8 (2)
C5—C6—C7—N1	179.6 (3)	C16—O2—C17—C18	0.0 (3)
C11—N1—C7—C8	-0.3 (4)	C16—O2—C17—C22	178.8 (3)
C11—N1—C7—C6	-178.1 (3)	C22-C17-C18-C19	-0.2 (5)
C6—C7—C8—C9	-1.2 (5)	O2-C17-C18-C19	178.7 (3)
N1—C7—C8—C9	-179.4 (3)	C22—C17—C18—N2	-178.9 (3)
C6—C7—C8—O1	178.0 (3)	O2—C17—C18—N2	0.0 (3)
N1-C7-C8-O1	-0.1 (3)	C16—N2—C18—C17	0.0 (3)
C11—O1—C8—C9	179.6 (3)	C16—N2—C18—C19	-178.5 (3)
C11—O1—C8—C7	0.4 (3)	C17—C18—C19—C20	-0.6 (5)

C7—C8—C9—C10	0.2 (5)	N2-C18-C19-C20	177.8 (3)
O1—C8—C9—C10	-179.0 (3)	C18-C19-C20-C21	0.4 (4)
C8—C9—C10—C5	0.2 (5)	C18—C19—C20—C23	-178.8 (3)
C6—C5—C10—C9	0.4 (5)	C19—C20—C21—C22	0.5 (5)
C4—C5—C10—C9	178.3 (3)	C23—C20—C21—C22	179.8 (3)
C7—N1—C11—O1	0.6 (4)	C18-C17-C22-C21	1.0 (4)
C7—N1—C11—C12	-179.3 (3)	O2—C17—C22—C21	-177.6 (3)
C8—O1—C11—N1	-0.6 (4)	C20-C21-C22-C17	-1.2 (5)
C8—O1—C11—C12	179.3 (3)	C19—C20—C23—C26	-41.2 (5)
N1-C11-C12-C13	20.3 (6)	C21—C20—C23—C26	139.6 (5)
O1-C11-C12-C13	-159.6 (3)	C19—C20—C23—C26'	17.0 (7)
N1-C11-C12-S1	-157.8 (3)	C21—C20—C23—C26'	-162.3 (6)
O1-C11-C12-S1	22.3 (4)	C19—C20—C23—C24	-166.3 (5)
C15—S1—C12—C13	0.1 (3)	C21—C20—C23—C24	14.5 (6)
C15—S1—C12—C11	178.5 (3)	C19—C20—C23—C25'	141.8 (5)
C11-C12-C13-C14	-178.5 (3)	C21—C20—C23—C25'	-37.4 (6)
S1—C12—C13—C14	-0.3 (4)	C19—C20—C23—C24'	-101.7 (5)
C12-C13-C14-C15	0.4 (4)	C21—C20—C23—C24'	79.0 (6)
C13-C14-C15-C16	179.9 (3)	C19—C20—C23—C25	75.3 (5)
C13—C14—C15—S1	-0.4 (4)	C21—C20—C23—C25	-104.0 (5)
C12—S1—C15—C14	0.2 (3)		

Fig. 1